

NV07SLN-DEV Small line sensor

Features

- 2×12 or 1×24 SPAD array
- Compatible with fiber bundles
- On-chip coincidence
- Up to 300 Mevents/s per SPAD
- External gate signal
- · All digital outputs
- USB-C for power and data

Applications

- · Quantum imaging
- Intensity interferometry
- Fast QKD
- Metrology

Description

The NV07SLN-DEV small line sensor was developed for applications requiring single photon line detectors with low timing jitter. The device does not require any external threshold circuitry and provides an asynchronous digital output for every pixel. It is built around the NovoViz NV07SLN small line single-photon avalanche diode (SPAD) sensor. Accumulated counts are read over the single USB connection that also provides power.

The sensor combines the benefits of a SPAD pixel, namely the single-photon resolution and fast operating speeds, with the benefits of on chip recharge and threshold circuitry – high event rates and reduced noise.

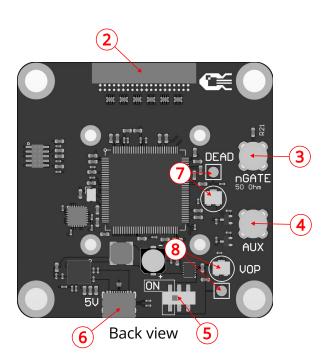
The array can be reshaped instantaneously from one to two lines with a digital signal. In addition, the two lines can be combined through AND gates to provide coincidence detection capabilities. The two line pixel pitch was designed to match with off the shelf optical fiber bundles. The sensor is well suited for interferometry, quantum imaging and metrology, among others.

Contents

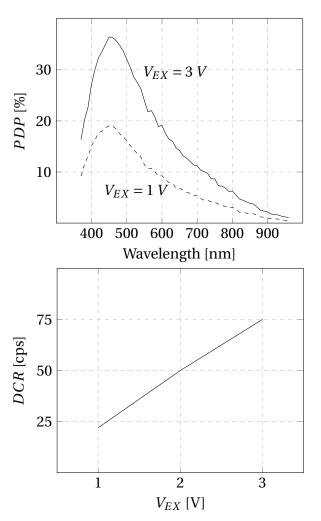
3	Typical characteristics	5
	Detailed description	6
5	Operation	7
6	Mechanical details	8
7	Resources7.1 Documentation updates7.2 Support	9 9
8	Ordering	10
9	Notice and disclaimer	11

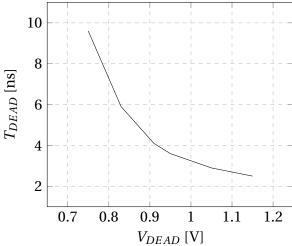
1 Absolute maximum ratings

		MIN	MAX	UNIT
V_{DD}	Supply voltage	4.5	5.5	V
V_{EX}	Excess bias voltage		3	V
P_{peak}	Peak power consumption		550	mW
T_A	Operating temperature	10	85	°C
E_{SPAD}	Single SPAD photon event rate		300	Mcps

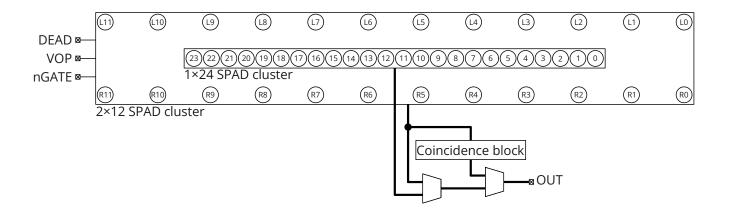

2 Specifications

		COMMENT	MIN	TYP	MAX	UNIT
	Array format			2×12		pixels
				1×24		pixels
P_P	Pixel pitch	2×12 format		125		μm
		1×24 format		25		μm
P_{Φ}	Pixel sensitive area diameter			10		μm
V_{BRK}	SPAD breakdown voltage			20.2		V
PDP	Photon detection probability	λ =450 nm, V_{EX} =3 V			35	%
λ_W	Wavelength window	<i>PDP</i> >10%, <i>V_{EX}</i> =3 V	350		720	nm
DCR	SPAD dark count rate	T_A =27 °C, V_{EX} =3 V	20	75		cps
T_{DEAD}	SPAD deadtime		2.5		9.6	ns
T_W	Output pulse width			T_{DEAD}		ns
APP	Afterpulsing probability	T_A =27 °C, V_{EX} =3 V		1.9		%





ITEM	NAME	DESCRIPTION
1		NV07SLN
2	BRK	Breakout connector
3	nGATE	Gate signal input port. Active low. 50Ω termination.
4	AUX	User-defined input/output port
5		SPAD power switch
6	USB-C	Data and 5 V input power port
7	DEAD	Dead time adjustment trimmer potentiometer and test point
8	VOP	SPAD bias adjustment trimmer potentiometer and test point
9		6 mm mounting holes for 60 mm cage systems
10		M3 mounting holes for 30 mm cage systems


3 Typical characteristics

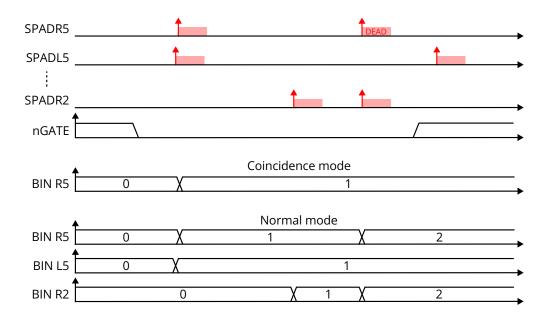
4 Detailed description

The NV07SLN-DEV system is a small line array of independent single photon counters based on the NovoViz NV07SLN SPAD sensor. It produces photon count histograms accumulated during a variable exposure period which can also be combined with an electronic gate signal. Additionally, the raw SPAD outputs are available at the breakout connector *BRK*.

The nGATE input has a 50 Ω pulldown, keeping the pixels fully on when the port is left unconnected.

The sensor has two separate SPAD arrays, a 2×12 large pitch format designed to be coupled with optical fiber bundles, and a 1×24 small pitch format. The two-line array can be combined into a 1×12 format using AND gates to implement on-chip coincidence detection. In this mode, half of the SPAD outputs are kept at logic zero. The user can instantly switch between the two array formats and enable/disable the coincidence circuit by changing two electrical control signals.

The output pulse width for all pixels is equal to the SPAD dead time selected by the user. Each SPAD has an independent active recharge circuit with an adjustable dead time, controlled through an external voltage. The user can change this value by adjusting the *DEAD* trimmer potentiometer on the board.


The board requires a single 5 V supply provided through the same USB-C connector used for data transfer. The SPAD bias voltage can be adjusted via the *VOP* trimmer potentiometer.

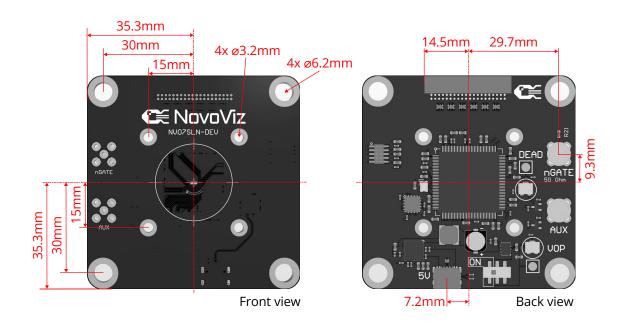
The *BRK* output is disabled by default to reduce power consumption. If used, the load should be buffered or the total output current kept under 10 mA.

5 Operation

The system requires a PC in order to configure the operation modes and recover the data. If requested, the firmware can be customized to enable the *BRK* port at start-up or set up default operating modes, allowing the system to function coupled with only external circuitry, without a PC connection.

The figure above shows normal operation of the NV07SLN-DEV system, assuming that the SPADs which are not shown do not generate any events and that the 2×12 array is selected. Two cases are shown, with the coincidence mode enabled and disabled. In the former, the corresponding bin increments only when simultaneous detections take place in the two corresponding SPADs. Two events are considered in coincidence if the time interval between them is less than $T_{DEAD}-3$ ns. With the coincidence mode disabled, every bin increments if the corresponding SPAD has a photon event. In either case, the photons arriving when the nGATE is disabled are ignored.

The switch on the back of the board should be in the OFF position when the power supply is turned on or off. This prevents damage to the SPAD pixels. It must be noted that the SPADs do not turn off instantaneously when the switch is moved to the OFF position after normal operation. A few seconds is needed for the decoupling capacitors to fully discharge below the SPAD breakdown voltage.


Adjusting the SPAD bias voltage with the VOP trimmer potentiometer should be done with the switch in the OFF position. The current bias voltage can be measured at the VOP test point.

Adjusting the SPAD dead time is done via the DEAD trimmer potentiometer, with the control voltage available at the DEAD test point.

The SMA auxiliary port *AUX* functions as a user-defined input/output. The default state is HiZ input.

6 Mechanical details

7 Resources

7.1 Documentation updates

The latest documentation can be found on the specific product page on www.novoviz.com. Please take note of the current document version and review the revision history included in the updated documentation.

7.2 Support

For inquiries please use the contact form on www.novoviz.com.

8 Ordering

Part number	Description
NV07SLN-DEV	Standalone board

The NV07SLN-DEV comes as a standalone board with the latest firmware. Visit www.novoviz.com to download the necessary software. There are no cables included.

9 Notice and disclaimer

Important notice

NovoViz provides technical and reliability information (including data sheets), design and application guidance, software tools, safety notes, and other supporting resources for general use only. All such materials are provided "as is" and may contain errors or omissions. NovoViz makes no representations or warranties, express or implied, including any implied warranties of merchantability, fitness for a particular purpose, or non-infringement of third-party intellectual property rights.

These resources are intended for qualified users who are developing applications with NovoViz products. You bear sole responsibility for (1) choosing the appropriate NovoViz products for your specific application, (2) designing, validating, and testing your application, and (3) ensuring that your application complies with all applicable standards, as well as any relevant safety, security, regulatory, or other requirements.

These resources may be updated or modified without prior notice. NovoViz grants you permission to use these materials solely for the development of applications incorporating NovoViz products described therein. Any reproduction, distribution, or display beyond this limited use is strictly prohibited. No license or rights are granted with respect to any other NovoViz intellectual property or any third-party intellectual property. NovoViz disclaims all liability for claims, damages, costs, losses, and liabilities arising from your use of these resources, and you agree to fully indemnify NovoViz and its agents against any such claims.

NovoViz products are provided subject to the NovoViz Terms of Sale or other applicable terms available either on www.novoviz.com or provided in conjunction with such NovoViz products. NovoViz's provision of these resources does not expand or otherwise alter NovoViz's applicable warranties or warranty disclaimers for NovoViz products.

NovoViz objects and rejects any additional or different terms you may have proposed.

ESD caution

This device is vulnerable to damage from electrostatic discharge (ESD). NovoViz recommends that all devices be handled using proper ESD precautions. Failure to follow correct handling and installation procedures may result in damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits are often more susceptible, which may cause the device to fail to meet published specifications.